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Abstrat

Let Q be anm by n integer matrix of rank e and let � : Z

n

!

Z

m

be the transformation given by �(x) = Qx. We give an

new algorithm whih, like earlier algorithms for the image

of �, omputes the kernel of � using modular arithmeti.

1 Introdution

Let Q be anm by n integer matrix. In this paper we present

a new algorithm for omputing the kernel of Q, i.e. the kernel

of the map

� : Z

n

! Z

m

; � : x 7! Qx

whih is a homomorphism of latties (see Setion 2). Our

algorithm omputes the uniquely determined basis of the

kernel of Q whih is in Hermite normal form (see Setion 2).

The omputation of the integer kernel of an integer ma-

trix is neessary for the solution of important problems in

omputational number theory. It is, for example, a key step

in the determination of a system of fundamental units of an

algebrai number �eld (see [1℄). There are also appliations

to group theory, sine abelian groups are Z-modules (see for

example [9℄).

The problem of omputing the image of � (that is, the

HNF-basis of the image of �) has been studied extensively,

for example in [4℄, [10℄, [14℄, [15℄, [11℄), [7℄, [6℄, [12℄, and

[8℄. The �rst �ve of these algorithms su�er, to one degree or

another, from an explosion in the size of integers used in in-

termediate stages, a phenomenon known as entry explosion

whih a�ets many algorithms over Z. The last four of these

algorithms use modular arithmeti, with the modulus being

any integer multiple of the determinant of the lattie gener-

ated by the olumns of Q. Therefore, these algorithms avoid

entry explosion; we all them modular image algorithms.

Any algorithm for the image of � gives as output a ma-

trix Q

0

whih is equivalent to Q, that is, suh that Q

0

= QU

for some unimodular n by n integer matrix U . One an

read o� the kernel of � diretly from U (see [5℄), and so any

image algorithm whih omputes suh a U is also a kernel

algorithm. Unfortunately, only the nonmodular image algo-

rithms ited above ompute suh a U , and so no modular

kernel algorithm is urrently available.

Our new algorithm is suh a modular kernel algorithm.

That is, it is an algorithm for the kernel of � whih is an

analogue of the modular HNF-algorithms. It determines the

kernel of Q by means of omputations modulo the determi-

nant of a submatrix of Q, thereby avoiding entry explosion.

More preisely, it proeeds in two steps.

Let e be the rank of Q. Then f = n� e is the dimension

of the kernel of Q.

First, a non-singular e by e submatrix Q

1

of Q is om-

puted, and d = jdetQ

1

j and adjQ

1

are determined. This is

ahieved by means of a modi�ation of the hinese remain-

dering algorithm of Hafner and MCurley [8℄. By swapping

olumns and rows, the matrix Q is transformed into the form

Q =

�

Q

1

Q

2

Q

3

Q

4

�

It is easy to dedue the kernel of the original matrix from

the kernel of the transformed matrix. Further, we show by

an easy argument that we may assume

Q =

�

Q

1

Q

2

�

; d > 0:

In the seond step, using the kernel of Qmod d, i.e. om-

putations modulo d, an integer f by f matrix S

2

is deter-

mined suh that

R =

�

�Q

�1

1

Q

2

S

2

S

2

�

=

�

�(adjQ

1

)Q

2

S

2

=d

S

2

�

(1)

is an integer matrix in Hermite normal form (see Setion 2)

whose olumns form a basis of the kernel of Q. It is easy

to ompute R from the above formula, or to retain it in a

produt representation (whih may be preferable).

In the ourse of the paper, we will prove that the above

algorithm is orret. We will also prove omplexity results

as in the following theorem. Let z = minfm;ng, let jjQjj be

the maximum of the absolute values of the entries of Q, and

let L = z log(zjjQjj). Arithmeti operations on integers are

addition, subtration, multipliation, division with remain-

der, and extended gd. We say that an integer x is of size s

if the number of bits in its binary expansion is bounded by

s.

Theorem 1 The algorithm given above orretly omputes

a matrix R whose olumns form a basis of the kernel of Q.

Further,

1. the omputation of Q

1

, adjQ

1

, and d = jdetQ

1

j an

be aomplished using O(emnz) arithmeti operations

on integers of size O(L), and

2. the omputation of S

2

an be aomplished using

O(en

2

) arithmeti operations on integers of size

O(log d).
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Note that the smaller d and the entries of adjQ are, the

faster and more spae-eÆient our algorithm is.

The rest of the paper is organized as follows. Throughout

the paper, we let Q be a given m by n integer matrix. In

setion 2 we set up notation and other preliminaries. In

setion 3 we desribe the omputation of the objets Q

1

, d,

and adjQ

1

and redue the problem to the ase

Q =

�

Q

1

Q

2

�

; d > 0:

In setion 4, we give onditions that are to be satis�ed by

a matrix S, of whih the matrix S

2

will be a submatrix,

and we prove that the olumns of the matrix R de�ned by

(1) indeed form the HNF-basis of the kernel of Q. Then in

setion 5, we show how to ompute a matrix S meeting the

given onditions. In setion 6, we prove Theorem 1. Finally,

in setion 7, we work out an example using our algorithm,

and in setion 8 we give some timings for an implementation

of the algorithm, using various input matries with small

entries.

The authors would like to express their thanks to the

members of the LiDIA-Group at the TU-Darmstadt, espe-

ially Volker M�uller, for helpful onversations. The seond

author aknowledges support from a National Siene Foun-

dation Graduate Fellowship.

2 Preliminaries

Let m and n be positive integers and R a ring. We write

Mat

m;n

(R) for the set of all matries with m rows and n

olumns and entries in R. If X 2Mat

m;n

(R) then we write

x

ij

for the entry of X in the ith row and jth olumn and

x

j

for the olumn vetor equal to the jth olumn of X. If

x is a vetor in R

m

then we write x[i℄ for the ith entry of

x, and we de�ne the last entry funtion (x) by delaring

that (x) is the index of the last nonzero entry in x, i.e. the

integer suh that

x[(x)℄ 6= 0; x[(x) + 1℄ = x[(x) + 2℄ = : : : = x[m℄ = 0:

The ith standard basis vetor of R

n

, denoted e

i

, is the vetor

of R

n

whose ith entry is 1 and whose other entries are zero.

If R is a ring, then by the terms kernel and image of

X 2Mat

m;n

(R) we shall always mean the kernel and image

of the homomorphism

Z

n

! Z

m

; v 7! Xv:

If X is a matrix with entries in Z then we de�ne

kXk = max fjx

ij

jg. Note that if X 2 Mat

m;n

(Z) and

Y 2Mat

n;p

(Z) then kXY k � nkXkkY k.

Ifm is a positive integer andX is a matrix inMat

m;m

(Z)

with nonzero determinant, then the adjoint of X, denoted

adjX, is the unique matrix Y 2Mat

m;m

(Z) suh that

XY = Y X = (detX)I

where I is the identity matrix in Mat

m;m

(Z). If Y is the

adjoint of X then

y

ij

= (�1)

i+j

d

ji

where d

ji

is the determinant of the submatrix X

0

obtained

by removing row j and olumn i from X. Note that adjX =

(detX)X

�1

.

Suppose that X is a matrix in Mat

m;m

(Z). It follows

from Hadamard's inequality (proved in [5℄, Corollary 2.5.5,

for example) that

jdetXj � (mkXk)

m

and k adjXk � ((m� 1)kXk)

m�1

:

A matrix H 2Mat

m;n

(Z) is in Hermite normal form if

there exists an integer r � n suh that the �rst r olumns of

H are 0 and, when r+1 � j < k � n, we have (h

j

) < (h

k

),

h

(h

j

);j

� 1 and 0 � h

(h

j

);k

< h

(h

j

);j

. If X is any ma-

trix in Mat

m;n

(Z), then there is a unimodular matrix U in

Mat

n;n

(Z) suh that XU is in Hermite normal form (see

[13℄, Theorem II.2). The matrix U is not uniquely deter-

mined but the matrix XU is unique; XU is alled the Her-

mite normal form of X.

We say that a matrix H 2 Mat

m;n

(Z) is in triangular

Hermite normal form if the following three onditions are

met:

1. m � n,

2. H is in Hermite normal form, and

3. (h

i

) = (m� n) + i for eah i 2 f1; 2; : : : ; ng.

A lattie is an additive subgroup L of R

k

for some posi-

tive integer k whih as a point set is disrete; all our latties

will be subsets of the lattie Z

k

. The lattie L an be written

as L =

P

t

i=1

Zb

i

with 0 � t � k and linearly independent

vetors b

1

; b

2

; : : : ; b

t

2 L. The integer t is an invariant of

L, alled the dimension of L. The sequene (b

1

; : : : ; b

t

) is

alled a basis of L, and the matrix B assoiated to this basis

is the k by t integer matrix whose jth olumn is the vetor

b

j

. A lattie has many bases, but a anonial one exists,

namely the basis whose assoiated matrix is in Hermite nor-

mal form; this basis is alled the HNF-basis of the lattie.

As usual, if n is an integer then lg n is the number of bits

in the binary representation of n. We use the term \arith-

meti operation" to mean one of the following operations on

two integers: addition, subtration, multipliation, division

with remainder, and extended gd.

3 Computing Q

1

, d, adjQ

1

; redutions

We use a modi�ation of an algorithm of Hafner and M-

Curley [8℄ to ompute Q

1

, d, and adjQ

1

. That algorithm

omputes e = rank(Q), a nonsingular e by e submatrix Q

1

of Q, and the determinant of Q

1

. We sketh the original al-

gorithm, adding to it the omputation of the adjoint adjQ

1

.

Let z = minfm;ng. First, the algorithm determines a posi-

tive integer h with

h = O(z log(zkQk))

suh that there is a prime number p � z for whih the rank

of Q modulo p is e, i.e. the rank of Q. For eah prime p � h

the algorithm determines the rank e

p

of Q mod p and a

submatrix Y

p

of Q whose rank mod p is e

p

. If q is a prime

with e

q

= maxfe

p

: p � hg then e = e

q

and we set Q

1

= Y

q

.

Then detQ

1

and adjQ

1

an be omputed using Gaussian

elimination and Chinese remaindering.

Now we show how, one Q

1

, d, and adjQ

1

have been

omputed, we may redue to the ase

Q =

�

Q

1

Q

2

�

2



where d = detQ

1

> 0. Let e be the rank of Q and set

f = n� e. By swapping olumns and rows we transform Q

into the form

Q =

�

Q

1

Q

2

Q

3

Q

4

�

with

Q

1

2Mat

e;e

(Z); Q

2

2Mat

e;f

(Z);

Q

3

2Mat

m�e;e

(Z); Q

4

2Mat

m�e;f

(Z):

By swapping at most one more row, we an ensure that

detQ

1

> 0. If we know the kernel of the transformed matrix,

it is easy to determine the kernel of the original matrix. We

have therefore redued to the ase

Q =

�

Q

1

Q

2

Q

3

Q

4

�

; d = detQ

1

> 0:

We further redue by proving the following result.

Proposition 1 The kernel of Q is the kernel of Q

0

=

�

Q

1

Q

2

�

.

Proof Clearly the kernel of Q is a subset of the kernel of Q

0

;

we proeed to show the reverse inlusion. Sine the rank of

Q is e there is a matrix T 2Mat

m�e;e

(Q) suh that

Q =

�

Q

0

TQ

0

�

If x is in the kernel of Q

0

then

Qx =

�

Q

0

x

TQ

0

x

�

=

�

0

0

�

so x is in the kernel of Q. 2

Thus we an assume, in addition to the ondition d > 0,

that

Q =

�

Q

1

Q

2

�

;

or in other words that Q is of rank m.

4 R is the kernel of Q

In this setion we give onditions whih a matrix S is to

satisfy; the matrix S

2

will be a submatrix of S. Then we

prove that the matrix R given by (1) is indeed the unique

matrix in Hermite normal form whose olumns generate the

kernel of Q. The redutions outlined in the previous setion

mean that we may assume that Q is of rank m, with Q

1

the

submatrix formed by the �rst m olumns of Q, and d > 0.

To desribe our algorithm we need some notation. Let

� = fx 2 Z

n

: Qx � 0mod dg:

Also, for j 2 f0; 1; 2; : : : ; ng we set

�

j

= fx 2 � j x[j + 1℄ = : : : = x[n℄ = 0g;

�

j

= f 2 Z j x[j℄ =  for some x 2 �

j

g:

Note that �

j

is a sublattie of Z

n

and �

j

is a Z-ideal for

0 � j � n. Further,

f0g = �

0

� �

1

� : : : � �

n

= �:

We will show below how to onstrut a matrix S 2

Mat

n;f

(Z) with the following properties:

1. QS � 0 mod d,

2. all entries of S lie in f0; 1; : : : ; dg,

3. S is in triangular Hermite normal form, and

4. the entry s

m+j;j

of S generates �

m+j

for eah j =

1; 2; : : : ; f .

Assume that S is known and write

S =

�

S

1

S

2

�

; S

1

2Mat

m;f

(Z); S

2

2Mat

f;f

(Z):

Let

R =

�

�Q

�1

1

Q

2

S

2

S

2

�

=

�

�(adjQ

1

)Q

2

S

2

=d

S

2

�

:

Theorem 2 The matrix R has integer entries, it is in tri-

angular Hermite normal form, and its olumns form a basis

of the kernel of Q.

Proof We show that R has integer entries. We know that

QS � 0mod d. This means that Q

1

S

1

+ Q

2

S

2

= dS

3

with

S

3

2 Mat

e;f

(Z). Therefore, Q

�1

1

Q

2

S

2

= dQ

�1

1

S

3

� S

1

.

Sine both dQ

�1

1

= adjQ

1

and S

1

are integer matries it

follows that Q

�1

1

Q

2

S

2

is also an integer matrix. Note that

R is in triangular Hermite normal form beause S is in tri-

angular Hermite normal form and the last f rows of R and

S are idential.

Note that

QR =

�

Q

1

Q

2

�

�

�Q

�1

1

Q

2

S

2

S

2

�

= �Q

2

S

2

+Q

2

S

2

= 0

so the olumns of R belong to the kernel of Q.

It remains to be shown that the olumns ofR form a basis

of the kernel of Q. Let T be the unique matrix in Hermite

normal form whose olumns generate the kernel of Q. Sine

Q

1

is nonsingular, T must be in triangular Hermite normal

form. For j 2 f0; � � � ; fg, let L

j

be the lattie generated by

the �rst j olumns of R and let L

0

j

be the lattie generated

by the �rst j olumns of T . Clearly, L

j

� L

0

j

for eah j.

We now prove, by indution on j, that L

0

j

� L

j

. For j = 0

the assertion is trivially orret. Suppose that the assertion

holds for eah j

0

< j. We have t

j

2 �

j

so t

m+j;j

2 �

j

.

Sine r

m+j;j

generates �

j

there must be an integer  suh

that t

m+j;j

= r

m+j;j

. Hene, t

j

� r

j

2 L

j�1

. Applying

the indution hypothesis, we see that t

j

2 L

j

and it follows

immediately that L

0

j

� L

j

, ompleting the indution. Now

we know that L

0

j

= L

j

for eah j; applying this with j = n

shows that the olumns of R form a basis of the kernel of

Q. 2

5 Computation of S

In this setion, we show how to ompute the matrix S using

omputations mod d.

We use an algorithm from [3℄ to ompute the matrix

Y 2Mat

n;r

(Z) in Hermite normal form whih satis�es the

following onditions:

1. The entries of Y lie in f0; 1; : : : ; d� 1g.

3



2. The olumns of Y together with de

1

; : : : ; de

n

generate

the lattie �.

3. For j 2 f1; : : : ; rg the (y

j

)th entry of y

j

generates the

ideal �

(y

j

)

.

We desribe the algorithm whih we use to produe Y .

The proofs an be found in [3℄. First, we redue Q modulo

d, obtaining a matrix Q 2 Mat

m;n

(Z=dZ), and we set a

matrix T equal to the identity in Mat

n;n

(Z=dZ). Next,

we begin a loop whih will proess eah row of Q in turn,

starting with the mth. The loop variable i is initialized to

m and dereases on eah pass until it reahes 1. In the ith

pass through the loop, we perform the following two steps.

1. Use Gaussian elimination in Z=dZ to zero out all but

the last of the entries in the ith row of Q (an analogue

of the usual extended gd algorithm allows us to do

this); perform all the same olumn operations on T .

2. Let a be the remaining nonzero element of the ith row;

if ab = 0 for some nonzero b 2 Z=dZ, then multiply the

last olumn of Q by b and multiply the last olumn of

T by b also. If, on the other hand, a is a unit, then

delete the last olumn of Q (but not the last olumn of

T ).

When the loop is omplete, the olumns of T gener-

ate the kernel of Q. Now let A be the zero matrix in

Mat

m;m

(Z=dZ). We apply a similar loop to T . The loop

variable is again i and it dereases from m to 1. In the ith

pass through the loop, we perform the following three steps.

1. Use Gaussian elimination in Z=dZ to zero out all but

the last of the entries in the ith row of T .

2. Store the last olumn of T in the ith olumn of A;

multiply a

i

by a suitable element of Z=dZ so that the

last nonzero entry of a

i

is a divisor of d.

3. Let a be the remaining nonzero element of the ith row;

if ab = 0 for some nonzero b 2 Z=dZ, then multiply

the last olumn of T by b. If, on the other hand, a is a

unit, then delete the last olumn of T .

When the loop is omplete, the olumns of A generate

the same submodule of (Z=dZ)

m

as the olumns of the orig-

inal matrix T , i.e. the kernel of Q. We now delete all zero

olumns of A and lift the resulting matrix to Z, using the

representatives f0; 1; 2; : : : ; d � 1g; the result is the desired

matrix Y .

We now show how to onstrut S from Y . Construt an

upper triangular matrix Z as follows. For j 2 f1; 2; : : : ; ng

the jth olumn of Z is the olumn y of Y with (y) = j if

suh a olumn exists. Otherwise it is de

j

. Then S is the

matrix onsisting of the last f olumns of Z.

We prove that S has the desired properties. By on-

strution, we have QS � 0mod d. Sine Y is in Hermite

normal form, S is in triangular Hermite normal form. Fi-

nally, we must show that the entry s

e+j;j

generates �

e+j

for

1 � j � f . If the jth olumn of S is equal to a olumn of Y

this is true beause of the orresponding property of Y . As-

sume that the jth olumn of S is de

e+j

. Sine the olumns

of Y together with the vetors de

j

, 1 � j � n generate � it

follows that �

j

= d.

6 Analysis

The orretness of the algorithm given above is obvious

from Theorem 2. We omplete the proof of Theorem 1

by verifying the time and spae bounds given there. Let

N = max fm;ng, z = min fm;ng, L = log zkQk. The anal-

ysis of [8℄ shows that the omputation of Q

1

, d, and adjQ

1

an be aomplished with O(emnz) arithmeti operations

on integers of size O(L) (our addition of the omputation

of adjQ

1

does not hange the bound). The redution to

the ase rankQ = m, d > 0 involves only row and olumn

swaps, not arithmeti. It takes en arithmeti operations on

numbers no larger than kQk to redue Q modulo d, and the

analysis of [3℄ says that O(en

2

) arithmeti operations on

numbers no larger than d

2

are required for the remainder of

the omputation of S outlined above. This proves Theorem

1.

7 Example

We work out the example

Q =

 

4 2 1 1

2 1 1 4

6 3 2 5

!

:

We ompute easily that e = 2, f = 2. Swapping rows and

olumns and then disarding the last row, we get

Q =

�

2 6 3 5

1 4 2 1

�

:

Write Q =

�

Q

1

Q

2

�

with both Q

1

and Q

2

inMat

2;2

(Z).

We easily ompute that d = 2, soQ

1

is nonsingular, and that

adjQ

1

=

�

4 �6

�1 2

�

:

(Of ourse we ould ahieve the onditions on Q

1

and d with

many other sets of row and olumn swaps.)

It is not hard to verify that (using the notation of setion

5)

Y =

0

B

�

0 1

1 0

0 1

0 1

1

C

A

; Z =

0

B

�

2 0 0 1

0 1 0 0

0 0 2 1

0 0 0 1

1

C

A

;

S =

0

B

�

0 1

0 0

2 1

0 1

1

C

A

; S

2

=

�

2 1

0 1

�

:

A simple appliation of the formula of Theorem 2 then gives

R =

0

B

�

0 �7

�1 1

2 1

0 1

1

C

A

whih indeed is the HNF-basis for the kernel ofQ as modi�ed

in the �rst step. To reover the kernel of the original Q, we

swap rows in a manner onsistent with the swaps of olumns

used earlier; the result is

0

B

�

�1 1

2 1

0 �7

0 1

1

C

A

:

4



8 Timings

In this setion we give a brief indiation of the behavior

of an implementation of the algorithm using the LiDIA [2℄

number theory library. We report the CPU time required

to run the implementation on a SPARC Ultra for matries

of various sizes. In eah ase the entries of the matrix were

randomly seleted from the set f0; 1; 2; : : : ; 10g. (Matries

with suh small entries are those for whih our algorithm is

most likely to be pratial; larger entries, of ourse, produe

larger d's.)

Dimensions Time required

50x51 4.82 s

50x75 8.31 s

80x81 32.72 s

80x120 56.96 s

100x101 1 m 26.06 s

100x150 2 m 46.76 s

130x131 4 m 37.01 s

130x200 9 m 22.44 s

150x151 9 m 2.06 s

150x200 14 m 9.29 s

180x181 21 m 4.15 s

180x240 33 m 27.81 s

200x201 35 m 16.23 s

200x250 50 m 0.64 s

250x251 1 h 38 m 2.85 s

250x325 2 h 31 m 58.89 s

300x301 3 h 54 m 48.17 s
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